
OBJECT ORIENTED
PROGRAMMING USING C++

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Chapter 19 - C++ Inheritance

Outline
19.1 Introduction
19.2 Inheritance: Base Classes and Derived Classes
19.3 Protected Members
19.4 Casting Base-Class Pointers to Derived-Class Pointers
19.5 Using Member Functions
19.6 Overriding Base-Class Members in a Derived Class
19.7 Public, Protected and Private Inheritance
19.8 Direct Base Classes and Indirect Base Classes
19.9 Using Constructors and Destructors in Derived Classes
19.10 Implicit Derived-Class Object to Base-Class Object Conversion
19.11 Software Engineering with Inheritance
19.12 Composition vs. Inheritance
19.13 Uses A and Knows A Relationships
19.14 Case Study: Point, Circle, Cylinder

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Objectives

• In this chapter, you will learn:
– To be able to create new classes by inheriting from existing

classes.
– To understand how inheritance promotes software reusability.
– To understand the notions of base classes and derived classes.

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

19.1 Introduction

• Inheritance
– New classes created from existing classes
– Absorb attributes and behaviors.

• Polymorphism
– Write programs in a general fashion
– Handle a wide variety of existing (and unspecified)

related classes
• Derived class

– Class that inherits data members and member functions
from a previously defined base class

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

19.1 Introduction

• Inheritance
– Single Inheritance

• Class inherits from one base class

– Multiple Inheritance
• Class inherits from multiple base classes

– Three types of inheritance:
• public: Derived objects are accessible by the base class

objects (focus of this chapter)
• private: Derived objects are inaccessible by the base class
• protected: Derived classes and friends can access

protected members of the base class

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

19.2 Base and Derived Classes

• Often an object from a derived class (subclass) “is an”
object of a base class (superclass)

Base class Derived classes
Student GraduateStudent

UndergraduateStudent

Shape Circle
Triangle
Rectangle

Loan CarLoan
HomeImprovementLoan
MortgageLoan

Employee FacultyMember
StaffMember

Account CheckingAccount
SavingsAccount

Fig. 19.1 Some simple inheritance examples.

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

19.2 Base and Derived Classes

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

19.2 Base and Derived Classes

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

19.2 Base and Derived Classes

• Implementation of public inheritance

class CommissionWorker : public Employee {

...

};

Class CommissionWorker inherits from class Employee

– friend functions not inherited
– private members of base class not accessible from derived

class

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

19.3 Protected Members

• protected inheritance
– Intermediate level of protection between public and
private inheritance

– Derived-class members can refer to public and
protected members of the base class simply by using the
member names

– Note that protected data “breaks” encapsulation

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

19.4 Casting Base Class Pointers to Derived
Class Pointers

• Object of a derived class
– Can be treated as an object of the base class
– Reverse not true - base class objects not a derived-class

object

• Downcasting a pointer
– Use an explicit cast to convert a base-class pointer to a

derived-class pointer
– Be sure that the type of the pointer matches the type of

object to which the pointer points

derivedPtr = static_cast< DerivedClass * > basePtr;

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

19.4 Casting Base-Class Pointers to Derived-
Class Pointers

• Example
– Circle class derived from the Point base class
– We use pointer of type Point to reference a Circle

object, and vice-versa

Outline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

point.h

1 // Fig. 19.4: point.h
2 // Definition of class Point
3 #ifndef POINT_H
4 #define POINT_H
5
6 #include <iostream>
7
8 using std::ostream;
9
10 class Point {
11 friend ostream &operator<<(ostream &, const Point &);
12 public:
13 Point(int = 0, int = 0); // default constructor
14 void setPoint(int, int); // set coordinates
15 int getX() const { return x; } // get x coordinate
16 int getY() const { return y; } // get y coordinate
17 protected: // accessible by derived classes
18 int x, y; // x and y coordinates of the Point
19 }; // end class Point
20
21 #endif

Outline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

point.cpp

22 // Fig. 19.4: point.cpp
23 // Member functions for class Point
24 #include <iostream>
25 #include "point.h"
26
27 // Constructor for class Point
28 Point::Point(int a, int b) { setPoint(a, b); }
29
30 // Set x and y coordinates of Point
31 void Point::setPoint(int a, int b)
32 {
33 x = a;
34 y = b;
35 } // end function setPoint
36
37 // Output Point (with overloaded stream insertion operator)
38 ostream &operator<<(ostream &output, const Point &p)
39 {
40 output << '[' << p.x << ", " << p.y << ']';
41
42 return output; // enables cascaded calls
43 } // end operator<< function

Outline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

circle.h

44 // Fig. 19.4: circle.h
45 // Definition of class Circle
46 #ifndef CIRCLE_H
47 #define CIRCLE_H
48
49 #include <iostream>
50
51 using std::ostream;
52
53 #include <iomanip>
54
55 using std::ios;
56 using std::setiosflags;
57 using std::setprecision;
58
59 #include "point.h"
60
61 class Circle : public Point { // Circle inherits from Point
62 friend ostream &operator<<(ostream &, const Circle &);
63 public:
64 // default constructor
65 Circle(double r = 0.0, int x = 0, int y = 0);
66
67 void setRadius(double); // set radius
68 double getRadius() const; // return radius
69 double area() const; // calculate area
70 protected:
71 double radius;
72 }; // end class Circle
73
74 #endif

Outline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

circle.cpp

75 // Fig. 19.4: circle.cpp
76 // Member function definitions for class Circle
77 #include "circle.h"
78
79 // Constructor for Circle calls constructor for Point
80 // with a member initializer then initializes radius.
81 Circle::Circle(double r, int a, int b)
82 : Point(a, b) // call base-class constructor
83 { setRadius(r); }
84
85 // Set radius of Circle
86 void Circle::setRadius(double r)
87 { radius = (r >= 0 ? r : 0); }
88
89 // Get radius of Circle
90 double Circle::getRadius() const { return radius; }
91
92 // Calculate area of Circle
93 double Circle::area() const
94 { return 3.14159 * radius * radius; }
95
96 // Output a Circle in the form:
97 // Center = [x, y]; Radius = #.##
98 ostream &operator<<(ostream &output, const Circle &c)
99 {
100 output << "Center = " << static_cast< Point >(c)
101 << "; Radius = "
102 << setiosflags(ios::fixed | ios::showpoint)
103 << setprecision(2) << c.radius;
104
105 return output; // enables cascaded calls
106 } // end operator<< function

Outline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

fig19_04.cpp (1 of 2)

107 // Fig. 19.4: fig19_04.cpp
108 // Casting base-class pointers to derived-class pointers
109 #include <iostream>
110
111 using std::cout;
112 using std::endl;
113
114 #include <iomanip>
115
116 #include "point.h"
117 #include "circle.h"
118
119 int main()
120 {
121 Point *pointPtr = 0, p(30, 50);
122 Circle *circlePtr = 0, c(2.7, 120, 89);
123
124 cout << "Point p: " << p << "\nCircle c: " << c << '\n';
125
126 // Treat a Circle as a Point (see only the base class part)
127 pointPtr = &c; // assign address of Circle to pointPtr
128 cout << "\nCircle c (via *pointPtr): "
129 << *pointPtr << '\n';
130

Outline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

fig19_04.cpp (2 of 2)

131 // Treat a Circle as a Circle (with some casting)
132 // cast base-class pointer to derived-class pointer
133 circlePtr = static_cast< Circle * >(pointPtr);
134 cout << "\nCircle c (via *circlePtr):\n" << *circlePtr
135 << "\nArea of c (via circlePtr): "
136 << circlePtr->area() << '\n';
137
138 // DANGEROUS: Treat a Point as a Circle
139 pointPtr = &p; // assign address of Point to pointPtr
140
141 // cast base-class pointer to derived-class pointer
142 circlePtr = static_cast< Circle * >(pointPtr);
143 cout << "\nPoint p (via *circlePtr):\n" << *circlePtr
144 << "\nArea of object circlePtr points to: "
145 << circlePtr->area() << endl;
146 return 0;
147 } // end function main

Point p: [30, 50]
Circle c: Center = [120, 89]; Radius = 2.70

Circle c (via *pointPtr): [120, 89]

Circle c (via *circlePtr):
Center = [120, 89]; Radius = 2.70
Area of c (via circlePtr): 22.90

Point p (via *circlePtr):
Center = [30, 50]; Radius = 0.00
Area of object circlePtr points to: 0.00

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

19.5 Using Member Functions

• Derived class
– Cannot directly access private members of its base class
– Hiding private members is a huge help in testing,

debugging and correctly modifying systems

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

19.6 Overriding Base-Class Members in a
Derived Class

• To override a base-class member function
– In derived class, supply new version of that function

• Same function name, different definition
– The scope-resolution operator may be used to access the base

class version from the derived class

Outline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

employ.h

1 // Fig. 19.5: employ.h
2 // Definition of class Employee
3 #ifndef EMPLOY_H
4 #define EMPLOY_H
5
6 class Employee {
7 public:
8 Employee(const char *, const char *); // constructor
9 void print() const; // output first and last name
10 ~Employee(); // destructor
11 private:
12 char *firstName; // dynamically allocated string
13 char *lastName; // dynamically allocated string
14 }; // end class Employee
15
16 #endif

17 // Fig. 19.5: employ.cpp
18 // Member function definitions for class Employee
19 #include <iostream>
20
21 using std::cout;
22
23 #include <cstring>
24 #include <cassert>
25 #include "employ.h"
26

employ.cpp (1 of 2)

Outline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

employ.cpp (2 of 2)

27 // Constructor dynamically allocates space for the
28 // first and last name and uses strcpy to copy
29 // the first and last names into the object.
30 Employee::Employee(const char *first, const char *last)
31 {
32 firstName = new char[strlen(first) + 1];
33 assert(firstName != 0); // terminate if not allocated
34 strcpy(firstName, first);
35
36 lastName = new char[strlen(last) + 1];
37 assert(lastName != 0); // terminate if not allocated
38 strcpy(lastName, last);
39 } // end Employee constructor
40
41 // Output employee name
42 void Employee::print() const
43 { cout << firstName << ' ' << lastName; }
44
45 // Destructor deallocates dynamically allocated memory
46 Employee::~Employee()
47 {
48 delete [] firstName; // reclaim dynamic memory
49 delete [] lastName; // reclaim dynamic memory
50 } // end Employee destructor

Outline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

hourly.h

51 // Fig. 19.5: hourly.h
52 // Definition of class HourlyWorker
53 #ifndef HOURLY_H
54 #define HOURLY_H
55
56 #include "employ.h"
57
58 class HourlyWorker : public Employee {
59 public:
60 HourlyWorker(const char*, const char*, double, double);
61 double getPay() const; // calculate and return salary
62 void print() const; // overridden base-class print
63 private:
64 double wage; // wage per hour
65 double hours; // hours worked for week
66 }; // end class HourlyWorker
67
68 #endif

69 // Fig. 19.5: hourly.cpp
70 // Member function definitions for class HourlyWorker
71 #include <iostream>
72
73 using std::cout;
74 using std::endl;
75
76 #include <iomanip>
77

hourly.cpp (1 of 2)

Outline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

hourly.cpp (2 of 2)

78 using std::ios;
79 using std::setiosflags;
80 using std::setprecision;
81
82 #include "hourly.h"
83
84 // Constructor for class HourlyWorker
85 HourlyWorker::HourlyWorker(const char *first,
86 const char *last,
87 double initHours, double initWage)
88 : Employee(first, last) // call base-class constructor
89 {
90 hours = initHours; // should validate
91 wage = initWage; // should validate
92 } // end HourlyWorker constructor
93
94 // Get the HourlyWorker's pay
95 double HourlyWorker::getPay() const { return wage * hours; }
96
97 // Print the HourlyWorker's name and pay
98 void HourlyWorker::print() const
99 {
100 cout << "HourlyWorker::print() is executing\n\n";
101 Employee::print(); // call base-class print function
102
103 cout << " is an hourly worker with pay of $"
104 << setiosflags(ios::fixed | ios::showpoint)
105 << setprecision(2) << getPay() << endl;
106 } // end function print

Outline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

fig19_05.cpp

107 // Fig. 19.5: fig19_05.cpp
108 // Overriding a base-class member function in a
109 // derived class.
110 #include "hourly.h"
111
112 int main()
113 {
114 HourlyWorker h("Bob", "Smith", 40.0, 10.00);
115 h.print();
116 return 0;
117 } // end function main

HourlyWorker::print() is executing

Bob Smith is an hourly worker with pay of $400.00

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

19.7 Public, Private, and Protected Inheritance

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

19.8 Direct and Indirect Base Classes

• Direct base class
– Explicitly listed derived class’ header with the colon (:) notation

when that derived class is declared.
– class HourlyWorker : public Employee

• Employee is a direct base class of HourlyWorker

• Indirect base class
– Inherited from two or more levels up the class hierarchy
– class MinuteWorker : public HourlyWorker

• Employee is an indirect base class of MinuteWorker

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

19.9 Using Constructors and Destructors in
Derived Classes

• Base class initializer
– Uses member-initializer syntax
– Can be provided in the derived class constructor to call the

base-class constructor explicitly
• Otherwise base class’ default constructor called implicitly

– Base-class constructors and base-class assignment operators
are not inherited by derived classes

• However, derived-class constructors and assignment operators
can call still them

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

19.9 Using Constructors and Destructors in
Derived Classes

• Derived-class constructor
– Calls the constructor for its base class first to initialize its

base-class members
– If the derived-class constructor is omitted, its default

constructor calls the base-class’ default constructor

• Destructors are called in the reverse order of
constructor calls.
– Derived-class destructor is called before its base-class

destructor

Outline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

point2.h

1 // Fig. 19.7: point2.h
2 // Definition of class Point
3 #ifndef POINT2_H
4 #define POINT2_H
5
6 class Point {
7 public:
8 Point(int = 0, int = 0); // default constructor
9 ~Point(); // destructor
10 protected: // accessible by derived classes
11 int x, y; // x and y coordinates of Point
12 }; // end class Point
13
14 #endif

Outline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

point2.cpp

15 // Fig. 19.7: point2.cpp
16 // Member function definitions for class Point
17 #include <iostream>
18
19 using std::cout;
20 using std::endl;
21
22 #include "point2.h"
23
24 // Constructor for class Point
25 Point::Point(int a, int b)
26 {
27 x = a;
28 y = b;
29
30 cout << "Point constructor: "
31 << '[' << x << ", " << y << ']' << endl;
32 } // end Point constructor
33
34 // Destructor for class Point
35 Point::~Point()
36 {
37 cout << "Point destructor: "
38 << '[' << x << ", " << y << ']' << endl;
39 } // end Point destructor

Outline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

circle2.h

40 // Fig. 19.7: circle2.h
41 // Definition of class Circle
42 #ifndef CIRCLE2_H
43 #define CIRCLE2_H
44
45 #include "point2.h"
46
47 class Circle : public Point {
48 public:
49 // default constructor
50 Circle(double r = 0.0, int x = 0, int y = 0);
51
52 ~Circle();
53 private:
54 double radius;
55 }; // end class Circle
56
57 #endif

Outline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

circle2.cpp

58 // Fig. 19.7: circle2.cpp
59 // Member function definitions for class Circle
60 #include <iostream>
61
62 using std::cout;
63 using std::endl;
64
65 #include "circle2.h"
66
67 // Constructor for Circle calls constructor for Point
68 Circle::Circle(double r, int a, int b)
69 : Point(a, b) // call base-class constructor
70 {
71 radius = r; // should validate
72 cout << "Circle constructor: radius is "
73 << radius << " [" << x << ", " << y << ']' << endl;
74 } // end Circle constructor
75
76 // Destructor for class Circle
77 Circle::~Circle()
78 {
79 cout << "Circle destructor: radius is "
80 << radius << " [" << x << ", " << y << ']' << endl;
81 } // end Circle destructor

Outline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

fig19_07.cpp (1 of 2)

82 // Fig. 19.7: fig19_07.cpp
83 // Demonstrate when base-class and derived-class
84 // constructors and destructors are called.
85 #include <iostream>
86
87 using std::cout;
88 using std::endl;
89
90 #include "point2.h"
91 #include "circle2.h"
92
93 int main()
94 {
95 // Show constructor and destructor calls for Point
96 {
97 Point p(11, 22);
98 } // end block
99
100 cout << endl;
101 Circle circle1(4.5, 72, 29);
102 cout << endl;
103 Circle circle2(10, 5, 5);
104 cout << endl;
105 return 0;
106 } // end function main

Outline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

fig19_07.cpp (2 of 2)

Point constructor: [11, 22]
Point destructor: [11, 22]

Point constructor: [72, 29]
Circle constructor: radius is 4.5 [72, 29]

Point constructor: [5, 5]
Circle constructor: radius is 10 [5, 5]

Circle destructor: radius is 10 [5, 5]
Point destructor: [5, 5]
Circle destructor: radius is 4.5 [72, 29]
Point destructor: [72, 29]

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

19.10 Implicit Derived-Class Object to Base-
Class Object Conversion

• baseClassObject = derivedClassObject;
– This will work

• Remember, the derived class object has more members than the base
class object

– Extra data is not given to the base class

• derivedClassObject = baseClassObject;
– May not work properly

• Unless an assignment operator is overloaded in the derived class, data
members exclusive to the derived class will be unassigned

– Base class has less data members than the derived class
• Some data members missing in the derived class object

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

19.10 Implicit Derived-Class Object to Base-
Class Object Conversion

• Four ways to mix base and derived class pointers
and objects:
– Referring to a base-class object with a base-class pointer

• Allowed
– Referring to a derived-class object with a derived-class

pointer
• Allowed

– Referring to a derived-class object with a base-class pointer
• Possible syntax error
• Code can only refer to base-class members, or syntax error

– Referring to a base-class object with a derived-class pointer
• Syntax error
• The derived-class pointer must first be cast to a base-class

pointer

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

19.11 Software Engineering With Inheritance

• Classes are often closely related
– “Factor out” common attributes and behaviors and place

these in a base class
– Use inheritance to form derived classes

• Modifications to a base class
– Derived classes do not change as long as the public and
protected interfaces are the same

– Derived classes may need to be recompiled

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

19.12 Composition vs. Inheritance

• "is a" relationship
– Inheritance

• "has a" relationship
– Composition - class has an object from another class as a

data member

Employee “is a” BirthDate; //Wrong!
Employee “has a” BirthDate;//Composition

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

19.13 Uses A And Knows A Relationships

• “uses a” relationship
– One object issues a function call to a member function of

another object

• “knows a” relationship
– One object is aware of another

• Contains a pointer handle or reference handle to another object
– Also called an association

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

19.14 Case Study: Point, Circle, Cylinder

• Define class Point
– Derive Circle

• Derive Cylinder

Outline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

point2.h

1 // Fig. 19.8: point2.h
2 // Definition of class Point
3 #ifndef POINT2_H
4 #define POINT2_H
5
6 #include <iostream>
7
8 using std::ostream;
9
10 class Point {
11 friend ostream &operator<<(ostream &, const Point &);
12 public:
13 Point(int = 0, int = 0); // default constructor
14 void setPoint(int, int); // set coordinates
15 int getX() const { return x; } // get x coordinate
16 int getY() const { return y; } // get y coordinate
17 protected: // accessible to derived classes
18 int x, y; // coordinates of the point
19 }; // end class Point
20
21 #endif

Outline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

point2.cpp

22 // Fig. 19.8: point2.cpp
23 // Member functions for class Point
24 #include "point2.h"
25
26 // Constructor for class Point
27 Point::Point(int a, int b) { setPoint(a, b); }
28
29 // Set the x and y coordinates
30 void Point::setPoint(int a, int b)
31 {
32 x = a;
33 y = b;
34 } // end function setPoint
35
36 // Output the Point
37 ostream &operator<<(ostream &output, const Point &p)
38 {
39 output << '[' << p.x << ", " << p.y << ']';
40
41 return output; // enables cascading
42 } // end operator<< function

Outline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

fig19_08.cpp

43 // Fig. 19.8: fig19_08.cpp
44 // Driver for class Point
45 #include <iostream>
46
47 using std::cout;
48 using std::endl;
49
50 #include "point2.h"
51
52 int main()
53 {
54 Point p(72, 115); // instantiate Point object p
55
56 // protected data of Point inaccessible to main
57 cout << "X coordinate is " << p.getX()
58 << "\nY coordinate is " << p.getY();
59
60 p.setPoint(10, 10);
61 cout << "\n\nThe new location of p is " << p << endl;
62
63 return 0;
64 } // end function main

X coordinate is 72
Y coordinate is 115

The new location of p is [10, 10]

Outline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

circle2.h

1 // Fig. 19.9: circle2.h
2 // Definition of class Circle
3 #ifndef CIRCLE2_H
4 #define CIRCLE2_H
5
6 #include <iostream>
7
8 using std::ostream;
9
10 #include "point2.h"
11
12 class Circle : public Point {
13 friend ostream &operator<<(ostream &, const Circle &);
14 public:
15 // default constructor
16 Circle(double r = 0.0, int x = 0, int y = 0);
17 void setRadius(double); // set radius
18 double getRadius() const; // return radius
19 double area() const; // calculate area
20 protected: // accessible to derived classes
21 double radius; // radius of the Circle
22 }; // end class Circle
23
24 #endif

Outline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

circle2.cpp (1 of 2)

25 // Fig. 19.9: circle2.cpp
26 // Member function definitions for class Circle
27 #include <iomanip>
28
29 using std::ios;
30 using std::setiosflags;
31 using std::setprecision;
32
33 #include "circle2.h"
34
35 // Constructor for Circle calls constructor for Point
36 // with a member initializer and initializes radius
37 Circle::Circle(double r, int a, int b)
38 : Point(a, b) // call base-class constructor
39 { setRadius(r); }
40
41 // Set radius
42 void Circle::setRadius(double r)
43 { radius = (r >= 0 ? r : 0); }
44
45 // Get radius
46 double Circle::getRadius() const { return radius; }
47
48 // Calculate area of Circle
49 double Circle::area() const
50 { return 3.14159 * radius * radius; }
51

Outline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

circle2.cpp (2 of 2)

52 // Output a circle in the form:
53 // Center = [x, y]; Radius = #.##
54 ostream &operator<<(ostream &output, const Circle &c)
55 {
56 output << "Center = " << static_cast< Point > (c)
57 << "; Radius = "
58 << setiosflags(ios::fixed | ios::showpoint)
59 << setprecision(2) << c.radius;
60
61 return output; // enables cascaded calls
62 } // end operator<< function

63 // Fig. 19.9: fig19_09.cpp
64 // Driver for class Circle
65 #include <iostream>
66
67 using std::cout;
68 using std::endl;
69
70 #include "point2.h"
71 #include "circle2.h"
72

fig19_09.cpp (1 of 2)

Outline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

fig19_09.cpp (2 of 2)

73 int main()
74 {
75 Circle c(2.5, 37, 43);
76
77 cout << "X coordinate is " << c.getX()
78 << "\nY coordinate is " << c.getY()
79 << "\nRadius is " << c.getRadius();
80
81 c.setRadius(4.25);
82 c.setPoint(2, 2);
83 cout << "\n\nThe new location and radius of c are\n"
84 << c << "\nArea " << c.area() << '\n';
85
86 Point &pRef = c;
87 cout << "\nCircle printed as a Point is: " << pRef << endl;
88
89 return 0;
90 } // end function main

X coordinate is 37
Y coordinate is 43
Radius is 2.5

The new location and radius of c are
Center = [2, 2]; Radius = 4.25
Area 56.74

Circle printed as a Point is: [2, 2]

Outline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

cylindr2.h

1 // Fig. 19.10: cylindr2.h
2 // Definition of class Cylinder
3 #ifndef CYLINDR2_H
4 #define CYLINDR2_H
5
6 #include <iostream>
7
8 using std::ostream;
9
10 #include "circle2.h"
11
12 class Cylinder : public Circle {
13 friend ostream &operator<<(ostream &, const Cylinder &);
14
15 public:
16 // default constructor
17 Cylinder(double h = 0.0, double r = 0.0,
18 int x = 0, int y = 0);
19
20 void setHeight(double); // set height
21 double getHeight() const; // return height
22 double area() const; // calculate and return area
23 double volume() const; // calculate and return volume
24
25 protected:
26 double height; // height of the Cylinder
27 }; // end class Cylinder
28
29 #endif

Outline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

cylindr2.cpp (1 of 2)

30 // Fig. 19.10: cylindr2.cpp
31 // Member and friend function definitions
32 // for class Cylinder.
33 #include "cylindr2.h"
34
35 // Cylinder constructor calls Circle constructor
36 Cylinder::Cylinder(double h, double r, int x, int y)
37 : Circle(r, x, y) // call base-class constructor
38 { setHeight(h); }
39
40 // Set height of Cylinder
41 void Cylinder::setHeight(double h)
42 { height = (h >= 0 ? h : 0); }
43
44 // Get height of Cylinder
45 double Cylinder::getHeight() const { return height; }
46
47 // Calculate area of Cylinder (i.e., surface area)
48 double Cylinder::area() const
49 {
50 return 2 * Circle::area() +
51 2 * 3.14159 * radius * height;
52 } // end function area
53
54 // Calculate volume of Cylinder
55 double Cylinder::volume() const
56 { return Circle::area() * height; }
57

Outline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

cylindr2.cpp (2 of 2)

58 // Output Cylinder dimensions
59 ostream &operator<<(ostream &output, const Cylinder &c)
60 {
61 output << static_cast< Circle >(c)
62 << "; Height = " << c.height;
63
64 return output; // enables cascaded calls
65 } // end operator<< function

fig19_10.cpp (1 of 3)
66 // Fig. 19.10: fig19_10.cpp
67 // Driver for class Cylinder
68 #include <iostream>
69
70 using std::cout;
71 using std::endl;
72
73 #include "point2.h"
74 #include "circle2.h"
75 #include "cylindr2.h"
76
77 int main()
78 {
79 // create Cylinder object
80 Cylinder cyl(5.7, 2.5, 12, 23);
81

Outline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

fig19_10.cpp (2 of 3)

82 // use get functions to display the Cylinder
83 cout << "X coordinate is " << cyl.getX()
84 << "\nY coordinate is " << cyl.getY()
85 << "\nRadius is " << cyl.getRadius()
86 << "\nHeight is " << cyl.getHeight() << "\n\n";
87
88 // use set functions to change the Cylinder's attributes
89 cyl.setHeight(10);
90 cyl.setRadius(4.25);
91 cyl.setPoint(2, 2);
92 cout << "The new location, radius, and height of cyl are:\n"
93 << cyl << '\n';
94
95 cout << "The area of cyl is:\n"
96 << cyl.area() << '\n';
97
98 // display the Cylinder as a Point
99 Point &pRef = cyl; // pRef "thinks" it is a Point
100 cout << "\nCylinder printed as a Point is: "
101 << pRef << "\n\n";
102
103 // display the Cylinder as a Circle
104 Circle &circleRef = cyl; // circleRef thinks it is a Circle
105 cout << "Cylinder printed as a Circle is:\n" << circleRef
106 << "\nArea: " << circleRef.area() << endl;
107
108 return 0;
109 } // end function main

Outline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

fig19_10.cpp (3 of 3)

X coordinate is 12
Y coordinate is 23
Radius is 2.5
Height is 5.7

The new location, radius, and height of cyl are:
Center = [2, 2]; Radius = 4.25; Height = 10.00
The area of cyl is:
380.53

Cylinder printed as a Point is: [2, 2]

Cylinder printed as a Circle is:
Center = [2, 2]; Radius = 4.25
Area: 56.74

