OBJECT ORIENTED
PROGRAMMING USING C++

Chapter 19 - C++ Inheritance

Outline

19.1
19.2
19.3
19.4
19.5
19.6
19.7
19.8
19.9
19.10
19.11
19.12
19.13
19.14

Introduction

Inheritance: Base Classes and Derived Classes
Protected Members

Casting Base-Class Pointers to Derived-Class Pointers
Using Member Functions

Overriding Base-Class Members in a Derived Class
Public, Protected and Private Inheritance

Direct Base Classes and Indirect Base Classes

Using Constructors and Destructors in Derived Classes
Implicit Derived-Class Object to Base-Class Object Conversion
Software Engineering with Inheritance

Composition vs. Inheritance

Uses A and Knows A Relationships

Case Study: Point, Circle, Cylinder

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Objectives

* In this chapter, you will learn:

— To be able to create new classes by inheriting from existing
classes.

— To understand how inheritance promotes software reusability.
— To understand the notions of base classes and derived classes.

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

19.1 Introduction

 Inheritance
— New classes created from existing classes
— Absorb attributes and behaviors.

e Polymorphism
— Write programs in a general fashion

— Handle a wide variety of existing (and unspecified)
related classes

e Derived class

— Class that inherits data members and member functions
from a previously defined base class

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

19.1 Introduction

e |nheritance

— Single Inheritance
e Class inherits from one base class

— Multiple Inheritance
 Class inherits from multiple base classes

— Three types of inheritance:

e public: Derived objects are accessible by the base class
objects (focus of this chapter)

- private: Derived objects are inaccessible by the base class

« protected: Derived classes and friends can access
protected members of the base class

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

19.2 Base and Derived Classes

« Often an object from a derived class (subclass) “is an”
object of a base class (superclass)

Base class Derived classes
Student GraduateStudent
UndergraduateStudent
Shape Circle
Triangle
Rectangle
Loan CarLoan
Home ImprovementLoan
MortgagelLoan
Employee FacultyMember
StaffMember
Account CheckingAccount
SavingsAccount
Fig. 19.1 Some simple inheritance examples.

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

19.2 Base and Derived Classes

CommunityMember

RS

Employee Student Alumnus (single inheritance)
Faculty Staff (single inheritance)
Administrator Teacher (single inheritance)

'\/

AdministratorTeacher (multiple inheritance)

Fg. 19.2 An inheritance hiesrarchy for university community memibers,

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

19.2 Base and Derived Classes

Shape
TwoDimensionalShape ThreeDimensionalShape
Circle Square Triangle Sphere Cube Tetrahedron

Fig. 19.3 A porfion of a Shape class hierarchy.

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

19.2 Base and Derived Classes

* Implementation of public inheritance

class CommissionWorker : public Employee {

¥

Class CommissionWorker inherits from class Employee
— friend functions not inherited

— private members of base class not accessible from derived
class

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

19.3 Protected Members

= protected inheritance

— Intermediate level of protection between public and
private inheritance

— Derived-class members can refer to public and
protected members of the base class simply by using the
member names

— Note that protected data “breaks” encapsulation

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

19.4 Casting Base Class Pointers to Derived
Class Pointers

e Object of a derived class
— Can be treated as an object of the base class
— Reverse not true - base class objects not a derived-class
object
* Downcasting a pointer

— Use an explicit cast to convert a base-class pointer to a
derived-class pointer

— Be sure that the type of the pointer matches the type of
object to which the pointer points

derivedPtr = static_cast< DerivedClass * > basePtr;

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

19.4 Casting Base-Class Pointers to Derived-
Class Pointers

o Example

— Circle class derived from the Point base class

— We use pointer of type Point to referencea Circle
object, and vice-versa

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

1

2

3 #iftndef

4 #define

5

6 #include <iostream>

-

8 using std::ostream;

9

10 class Point {

11 friend ostream &operator<<(ostream &, const Point &);
12 public:

13 Point(int = 0, Int =):

14 void setPoint(Int, Int);

15 int getX() const { return x; }
16 int getY() const { return y; }
17 protected:

18 int x, y;

19 };

20

21 #endif

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

A

\'%

point.h

Qutline

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

#include <iostream>
#include

Point::Point(int a, int b) { setPoint(a, b); }

void Point::setPoint(int a, Int b)
{

X
y

a;
b;

}

ostream &operator<<(ostream &output, const Point &p)

{

output << << p.-X << << p.y << :

return output;

}

A Outline
W4
point.cpp

44
45
46
47
48
49
50
o1
52
53
o4
95
56
o7
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

#ifndef
#define

#include <iostream>
using std::ostream;
#include <iomanip>
using std::i10s;

using std::setiosflags;
using std::setprecision;

#include

class Circle : public Point {

friend ostream &operator<<(ostream &,

public:
Circle(double r = , Int X

void setRadius(double);

double getRadius() const;

double area() const;
protected:

double radius;

¥

int y =

)

const Circle &);

A

\'%

circle.h

Qutline

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

#include

Circle::Circle(double r, iInt a, Int b))
: Point(a, b))
{ setRadius(r); }

void Circle::setRadius(double r)
{ radius = (r >= ?r :): }

double Circle::getRadius() const { return radius; }

double Circle::area() const
{ return * radius * radius; }

ostream &operator<<(ostream &output, const Circle &c)

{
output << << static cast< Point >(c)
<<
<< setiosflags(|)
<< setprecision() << c.radius;

return output;

}

A Outline
\
circle.cpp

107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

#include <iostream>

using std::cout;
using std::endl;

#include <iomanip>

#include

#include

int mainQ)

{
Point *pointPtr = 0, p(,
Circle *circlePtr = 0, c(
cout << << p <<

pointPtr = &c;
cout <<
<< *pointPtr << ;

<< C <<

A

Qutline

\

figl9 04.cpp (1 of 2)

131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147 }

circlePtr = static _cast< Circle
cout <<
<<

<< circlePtr->area() <<

pointPtr = &p;

circlePtr = static _cast< Circle
cout <<
<<

* >(pointPtr);
<< *circlePtr

* >(pointPtr);
<< *circlePtr

<< circlePtr->area() << endl;

return ;

Point p: [30, 50]

Circle

Circle

Circle
Center

C:

C

C

(via *pointPtr): [120, 89]

(via *circlePtr):
[120, 89]; Radius = 2.70

Area of c (via circlePtr): 22.90

Point p (via *circlePtr):

Center

Area of object circlePtr points to: 0.00

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

[30, 50]; Radius = 0.00

Center = [120, 89]; Radius = 2.70

A

Qutline

\

figl9 04.cpp (2 of 2)

19.5 Using Member Functions

e Derived class

— Cannot directly access private members of its base class

— Hiding private members is a huge help in testing,
debugging and correctly modifying systems

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

19.6 Overriding Base-Class Members in a
Derived Class

 To override a base-class member function
— In derived class, supply new version of that function
e Same function name, different definition

— The scope-resolution operator may be used to access the base
class version from the derived class

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

OO ~NOULh, WN P

17
18
19
20
21
22
23
24
25
26

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

#ifndef
#define

class Employee {
public:

Employee(const char *, const char *);

void print() const;

~Employee();
private:

char *firstName;

char *lastName;

¥

#endif

#include <iostream>
using std::cout;
#include <cstring>

#include <cassert>
#include

A

Qutline

\'%

employ.h

employ.cpp (1 of 2)

27 A

28 Outline

29 "'

30 Employee: :Employee(const char *first, const char *last)

31 { employ.cpp (2 of 2)
32 firstName = new char[strlen(first) + 1:
=l assert(firstName !=);

34 strcpy(firstName, first);

35

36 lastName = new char[strlen(last) + 1;
37 assert(lastName !=)

38 strcpy(lastName, last);

39 }

40

41

42 void Employee::print() const

43 { cout << firstName << << lastName; }
44

45

46 Employee: :~Employee()

47 {

48 delete [] firstName;

49 delete [] lastName;

50 }

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

69
70
71
72
73
74
75
76
77

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

#ifndef
#define

#include

class HourlyWorker : public Employee {

public:

HourllyWorker(const char*, const char*, double, double);

double getPay() const;

void print() const;
private:

double wage;

double hours;

¥

#endif

#include <iostream>

using std::cout;
using std::endl;

#include <iomanip>

A

Qutline

\'%

hourly.h

hourly.cpp (1 of 2)

78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

using std::i10s;
using std::setiosflags;
using std::setprecision;

#include

HourlyWorker: :HourlyWorker(const char *first,
const char *last,
double EnitHours, double InitWage)
: Employee(first, last)
{
tHours;

hours = i
tWage;

in
wage = iIni

}

double HourlyWorker::getPay() const { return wage * hours; }

void HourlyWorker::print() const

{
cout << ;
Employee: :print();
cout <<
<< setiosftlags(|)
<< setprecision(©) << getPay() << endl;
}

A Oultline
\
hourly.cpp (2 of 2)

107 ‘.L

108 Outline

109 "'

110 #include

111 fig19_05.cpp
112 int main(Q)

113 {

114 HourlyWorker h(, , .)

115 h.print(Q);

116 return O;

117 }

HourlyWorker::print() 1s executing

Bob Smith is an hourly worker with pay of $400.00

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

19.7 Public, Private, and Protected Inheritance

Base
class

access

Type of inheritance

member

specifier

public
inheritance

protected
inheritance

private
inheritance

public

pubTic in derived class.

Can be accessed directly by
any non-static member
functions, friend
functions and non-member
functions.

protected in derived class.

Can be accessed directly by
all non-static member
functions and friend
functions.

private in derived class.

(Can be accessed directly
by all non-static
member functions and
friend functions.

protected

protected in derived clags.

Can be accessed directly by
all non-static member
functions and friend
functions.

protected in derived clags.

Can be accessed directly by
all non-static member
functions and friend
functions.

private in derived clags.

Can be accessed directly
by all non-static
member functions and
friend functions.

private

Hidden in derived class.

Can be accessed by non-
static member functions
and friend functions
through publicor
protected member func-
tiong of the base class.

Hidden in derived class.

Can be accessed by non-
static member functions
and friend functions
through publicor
protected member func-
tiong of the base class.

Hidden in dertved class.

Can be accessed by non-
static member
functions and friend
functions through public
or protected member
functions of the base class.

Fig. 19.6 summary of hase-cldss member accessibllity in o derived Closs,
© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

19.8 Direct and Indirect Base Classes

e Direct base class

— Explicitly listed derived class’ header with the colon (:) notation
when that derived class is declared.

— class HourlyWorker : public Employee
e Employee s a direct base class of Hour lyWorker

e Indirect base class

— Inherited from two or more levels up the class hierarchy
— class MinuteWorker : public HourlyWorker

e Employee is an indirect base class of MinuteWorker

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

19.9 Using Constructors and Destructors In
Derived Classes

e Base class initializer
— Uses member-initializer syntax

— Can be provided in the derived class constructor to call the
base-class constructor explicitly
» Otherwise base class’ default constructor called implicitly
— Base-class constructors and base-class assignment operators
are not inherited by derived classes

« However, derived-class constructors and assignment operators
can call still them

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

19.9 Using Constructors and Destructors In
Derived Classes

e Derived-class constructor

— Calls the constructor for its base class first to initialize its
base-class members

— If the derived-class constructor is omitted, its default
constructor calls the base-class’ default constructor

e Destructors are called in the reverse order of
constructor calls.

— Derived-class destructor is called before its base-class
destructor

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

1

2

3 #iftndef

4 #define

5

6 class Point {
7 public:

8 Point(int = 0, Int =):
9 ~Point();
10 protected:

11 int x, y;
12 };

13

14 #endif

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

A Qutline
WV
point2.h

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

#include <iostream>

using std::cout;
using std::endl;

#include

Point::Point(int a, int b)
{

X = a,
y = b;
cout <<
<< << X << <Yy <<

Point: :~Point()
{

cout <<
<< << X << <<y <<

<< endl;

<< endl;

A Oultline
\
point2.cpp

40
41
42
43
44
45
46
47
48
49
50
o1
52
53
o4
95
56
o7

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

#ifndef
#define

#include

class Circle : public Point {

public:
Circle(double r

~Circle();
private:
double radius;

¥

#endif

A Outline
Vv
circle2.h

58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

#include <iostream>

using std::cout;
using std::endl;

#include

Circle::Circle(double r,
: Point(a, b)

{
radius = r;
cout <<
<< radius <<
ks

Circle::~Circle()
{
cout <<
<< radius <<

int a,

<< X <<

<< X <<

int b)

<< y <<

<< y <<

<< endl;

<< endl;

A Oultline
\
circle2.cpp

82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

#include <iostream>

using std::cout;
using std::endl;

#include
#include

int mainQ)

{
{
}

Point p(,)

cout << endl;

Circle circlel(,
cout << endl;

Circle circle2(,
cout << endl;

return 0O;

}

A

Qutline

\

figl9 07.cpp (1 of 2)

Point constructor:

Point destructor:

Point constructor:
Circle constructor:

Point constructor:
Circle constructor:

Circle destructor:
Point destructor:
Circle destructor:
Point destructor:

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

[11, 22]
[11, 22]

[72, 29]
radius i1s 4.5 [72, 29]

[5, 5]
radius i1s 10 [5, 5]

radius i1s 10 [5, 5]
[5. 5]

radius i1s 4.5 [72, 29]
[72, 29]

A

Qutline

\

figl9 07.cpp (2 of 2)

19.10 Implicit Derived-Class Object to Base-
Class Object Conversion

e paseClassObject = derivedClassObject;

— This will work

* Remember, the derived class object has more members than the base
class object

— Extra data is not given to the base class

e derivedClassObject = baseClassObject;

— May not work properly

« Unless an assignment operator is overloaded in the derived class, data
members exclusive to the derived class will be unassigned

— Base class has less data members than the derived class
« Some data members missing in the derived class object

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

19.10 Implicit Derived-Class Object to Base-
Class Object Conversion

* Four ways to mix base and derived class pointers
and objects:

— Referring to a base-class object with a base-class pointer
 Allowed
— Referring to a derived-class object with a derived-class
pointer
 Allowed

— Referring to a derived-class object with a base-class pointer
» Possible syntax error
» Code can only refer to base-class members, or syntax error

— Referring to a base-class object with a derived-class pointer
e Syntax error

 The derived-class pointer must first be cast to a base-class

pointer
© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

19.11 Software Engineering With Inheritance

o Classes are often closely related

— “Factor out” common attributes and behaviors and place
these in a base class

— Use inheritance to form derived classes

 Modifications to a base class

— Derived classes do not change as long as the public and
protected interfaces are the same

— Derived classes may need to be recompiled

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

19.12 Composition vs. Inheritance

e "Isa" relationship
— Inheritance

e "hasa" relationship

— Composition - class has an object from another class as a
data member

Employee “isa” BirthDate; //Wrong!
Employee “has a” BirthDate;//Composition

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

19.13 Uses A And Knows A Relationships

e “usesa” relationship

— One object issues a function call to a member function of
another object
e “knows a” relationship

— One object is aware of another
» Contains a pointer handle or reference handle to another object

— Also called an association

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

19.14 Case Study: Point, Circle, Cylinder

e Define class Point

— Derive Circle
e Derive Cylinder

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

1

2

3 #iftndef

4 #define

5

6 #include <iostream>

-

8 using std::ostream;

9

10 class Point {

11 friend ostream &operator<<(ostream &, const Point &);
12 public:

13 Point(int = 0, Int =):

14 void setPoint(Int, Int);

15 int getX() const { return x; }
16 int getY() const { return y; }
17 protected:

18 int x, y;

19 };

20

21 #endif

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

A Qutline
WV
point2.h

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

#include

Point::Point(int a, int b) { setPoint(a, b); }

void Point::setPoint(int a,

{

X
y

a;
b;

}

ostream &operator<<(ostream &output, const Point &p)

{

output << << p.X <<

return output;

}

int b)

<< p.y <<

A Oultline
\
point2.cpp

43
44
45
46
47
48
49
50
o1
52
53
o4
95
56
o7
58
59
60
61
62
63
64

#include <iostream>

using std::cout;
using std::endl;

#include
int mainQ)

{
Point p(,

cout <<
<<

p-setPoint(,
cout <<

return .

X coordinate is 72
Y coordinate is 115

The new location of p i1s [10, 10]

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

<< p.getX(
<< p-getY(Q);

<< p << endl;

A Outline
W4
figl9 08.cpp

1

2

3 #iftndef

4 #define

5

6 #include <iostream>

-

8 using std::ostream;

9

10 #include

11

12 class Circle : public Point {
13 friend ostream &operator<<(
14 public:

15

16 Circle(double r = , Int
17 void setRadius(double);
18 double getRadius() const;
19 double area() const;

20 protected:

21 double radius;

22 };

23

24 #endif

© Copyright 1992-2004 by Deitel & Associates, Inc

ostream &, const Circle &);

X =0, iInty =0);

. and Pearson Education Inc. All Rights Reserved.

A Outline
Vv
circle2.h

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

#include <iomanip>

using std::i10s;

using std::setiosflags;
using std::setprecision;

#include

Circle::Circle(double r, iInt a, Int b))
: Point(a, b))
{ setRadius(r); }

void Circle::setRadius(double r)
{ radius = (r >= ?r :): }

double Circle::getRadius() const { return radius; }

double Circle::area() const
{ return * radius * radius; }

A

Qutline

\

circle2.cpp (1 of 2)

52
53
o4
95
56
o7
58
59
60
61
62

63
64
65
66
67
68
69
70
71
72

ostream &operator<<(ostream &output, const Circle &c)

{
output << << static cast< Point > (c)
<<

<< setiosftlags(|)
<< setprecision() << c.radius;

return output;

}

#include <iostream>

using std::cout;
using std::endl;

#include
#include

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

A

Qutline

\

circle2.cpp (2 of 2)

fig19 09.cpp (1 of 2)

73 int mainQ)

74 {

75 Circle c(, ,
76

77 cout <<

78 <<

79 << "

80

81 c.setRadius();
82 c.setPoint(-,);
83 cout <<

84 << C <<

85

86 Point &pRef = c;

87 cout <<

88

89 return O;

90 }

X coordinate is 37
Y coordinate is 43
Radius is 2.5

<< c.getX()

<< c.getY(Q

<< c.getRadius();

<< c.area() << ;

<< pRef << endl;

The new location and radius of c are

Center = [2, 2]; Radius = 4.25

Area 56.74

Circle printed as a Point 1is:

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

[2, 2]

A

Qutline

\

figl9 09.cpp (2 of 2)

1

2

3 #iftndef

4 #define

5

6 #include <iostream>

-

8 using std::ostream;

9

10 #include

11

12 class Cylinder : public Circle {

13 friend ostream &operator<<(ostream &, const Cylinder &);
14

15 public:

16

17 Cylinder(double h = , double r = ,
18 int x =0, Inty =)
19

20 void setHeight(double);

21 double getHeight() const;

22 double area() const;

23 double volume() const;

24

25 protected:

26 double height;

27 };

28

29 #endif

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

A Qutline
WV
cylindr2.h

30

31

32

33 #include

34

35

36 Cylinder::Cylinder(double h, double r, Int x, Inty)
37 > Circle(r, X, ¥)

38 { setHeight(h); }

39

40

41 void Cylinder::setHeight(double h)

42 { height = (h >= ? h :): }

43

44

45 double Cylinder::getHeight() const { return height; }
46

47

48 double Cylinder::area() const

49 {

50 return * Circle::area() +

51 * * radius * height;
52 }

53

54

55 double Cylinder::volume() const

56 { return Circle::area() * height; }
57

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

A

Qutline

\

cylindr2.cpp (1 of 2)

58
59
60
61
62
63
64
65

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

ostream &operator<<(ostream &output, const Cylinder &c)

{
output << static_cast< Circle >(c)
<< << c.height;

return output;

}

#include <iostream>

using std::cout;
using std::endl;

#include
#include
#include

int mainQ)

{

Cylinder cyl(, , ,)

A

Qutline

\

cylindr2.cpp (2 of 2)

fig19 10.cpp (1 of 3)

82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
08
99
100
101
102
103
104
105
106
107
108
109 }

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

cout << << cyl.getxX()
<< << cyl.getY()
<< << cyl.getRadius()
<< << cyl.getHeight() << :

cyl _.setHeight();
cyl .setRadius();
cyl _setPoint(~,);
cout <<

<< ¢yl <<

cout <<

<< cyl.area() <<

Point &pRef = cyl;
cout <<
<< pRef << ;

Circle &circleRef = cyl;

cout << << circleRef
<< << circleRef.area() << endl;
return 0;

A

Qutline

\

fig19 10.cpp (2 of 3)

X coordinate is 12
Y coordinate i1s 23
Radius is 2.5
Height i1s 5.7

The new location, radius, and height of cyl are:

Center = [2, 2]; Radius = 4.25; Height = 10.00
The area of cyl is:
380.53

Cylinder printed as a Point i1s: [2, 2]
Cylinder printed as a Circle 1is:

Center = [2, 2]; Radius = 4.25
Area: 56.74

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

A

Qutline

\

fig19 10.cpp (3 of 3)

